The Usefulness Of Visual Cryptography Techniques: A Literature Review

Ernesto Lee¹, Lama A Alzahrani², Faysal Rahman³

¹Professor Department of Computer Science, Broward College United States.

²Researcher.

³Researcher University Teknologi Malaysia.

Abstract

Visual Cryptography is an encryption technique used to store the secret in graphics so that the observer can decode it if the right key image is applied. In the world of fast-growing technology, we face many security and privacy issues. In the exchange of images, privacy became an unavoidable issue. Visual cryptography (VC) is the modern cryptographic process used for Encryption, and it can securely share the files, and its details are kept secret. Visual cryptography approaches are discussed in this paper that is used to mask the original information from an attacker or an unwelcomed person. Images, text, and other types of visual data can be encoded and decoded to create an image when decrypted. Many things are involved in it, like; symmetric key cryptography, steganography, visual cryptography, invisible multiple watermarking, and secure document sharing using visual cryptography technique. A wide area of applications of visual cryptography is also a part of this paper. In addition, with that, security breaches and future technologies in the field of cryptography are discussed. In this paper, we compare different visual cryptography techniques, and further, we discuss the future trends and upcoming threats to visual cryptography.

Keywords: Encryption/Decryption, Visual Cryptography Techniques, Visual Cryptography Applications

1. Introduction

Using Visual Cryptography, we can encode visual data and decode it similarly. With advancements in technology, data privacy, security, and hiding are very worthy and important for many organizations. Many organisations spend millions of dollars on maintaining the security and privacy of their data. This technique is coming into being due to enlarging several security threats, cyber theft or crime. As technology becomes more advanced, criminals also have many ways to perform cybercrime. To overcome these issues, we need Visual Cryptography. The fast expansion of the internet and internet services, which involve the connection of various devices and computers to transport data, necessitates a high degree of security. Traditional encryption algorithms transform viewable pictures to an unreadable ciphertext format automatically. Encryption converts data to an unreadable and secure structure for transmission over the internet using a hash function and, indirectly, a mathematical function. Visual Cryptography is a term used to describe the

act of assigning a value to each part of an image. Photos, paintings, and so on can be used as secret pictures. Encryption in the form of visuals is an important part of exchanging and distributing intimate images. Naor and Shamir [1] presented the concept of visual cryptography in 1994. With it, you may encode visual data (such as written material, notes, and photos) and have the human visual system decipher it on its own. In 1994, [1] developed a novel security method called visual cryptography, which they termed "visual cryptography." The white pixel in the early assassination attempts of Naor and Shamir indicates translucent colors because of the treatment of the black and white pixels. An example of a simple (2,2) visual threshold method is in Table 1.

Pixel	Block 1	Block 2	Block 1 superimposes on block 2
	(1, 0)	(0,1)	(1, 1)
	(0, 1)	(1, 0)	(1, 1)
	(1, 0)	(0, 1)	(1, 0)
	(0, 1)	(1, 0)	(0, 1)

Table 1. (2, 2) Visual Threshold schemes

This paper will elaborate on working on the visual cryptography techniques and their application in which their summaries are discussed, why they are used, and the type of issues we can solve. Analysis and comparison table are used to compare all the techniques to get the performance of all the techniques. We are discussing research papers related to visual cryptography usage on different platforms like visual cryptography in cloud computing, networks, online detection systems, and banking transaction systems. Also, VC is used for secret sharing halftone images, binary, CYAN images, and colored images. Architecture for (2,2) scheme is shown in Figure 1 share creation and Figure 2 authentication. We are discussing different types of Visual Cryptography techniques in this paper like symmetric key cryptography [2], text-based steganography and visual cryptography [3], Multiple Watermark Embedding extends SWE [4], Secured Document Sharing Using Visual Cryptography [5], Hou's third algorithm [6], secure (2,2) extended cryptography scheme [7], Encryption of facial photographs, employing visual cryptography and zero-watermarking [8], the synchronization of visual information pixels (VIP) and the dispersion of errors [9], Fourier transforms (FrFT) and visual cryptography (VC) [10], XOR-based visual cryptography scheme (XVCS) [11], Encryption and decryption using elliptic curve cryptography [12] and describing many others techniques like this. Our main motive is to hide or private our data from unauthorized access so that no one can breach our confidentiality, integrity, and authenticity. Visual cryptography techniques ensure all those constraints positively.

Webology (ISSN: 1735-188X) Volume 19, Number 3, 2022

Figure 1. Share Creation

Figure 2. Authentication in the (2,2) scheme

Furthermore, the document includes the following list. All the previous strategies and comparisons are discussed in Section II. Section III will be followed for future trends and predictions in visual cryptography. Section IV discusses the conclusion.

2. Literature Review

Symmetric key cryptography involves supplying the cryptosystem with an image and a key. An encrypted image is generated by the encryption method and communicated to the recipient. Upon receiving the encrypted image, the recipient decrypts the unedited version by entering a key. The quality of the restored image is one of the most critical aspects in evaluating the efficacy. Since most computer input and output systems employ the RGB color scheme, the color image is typically represented in this color space [2]. It is a technique that minimizes the exchange of information between the end-user and the online merchant but allows for successful fund transfer from the consumer's account to the merchant account, ensuring that consumer information is protected and that the data is not misused at the merchant's end. Thanks to the Multiple Watermark Embedding feature, it's possible to integrate more than one watermark in the same image. For example, the cover image of SWE [4] has many watermarks inserted in it. A new methodology called SDSUVC is utilized for effective document management, which takes up to a lesser extent storage capacity on the cloud and takes less time complexity to recover the actual document using this technique.

A new authentication mechanism has been developed using Hou's third method for color photos. Voting and banking applications can be made electronically using the fundamental process (2,2). Using this technology, it is possible to obtain high-quality reconstructed images without pixel expansion [6]. Here, you can find a secure (2,2) extended cryptography system [7]. It explains how we don't need more pixels to retrieve or share an image, and it delivers high quality for both [8–9].

The author presents a new and secure method for creating shares in this paper. As a result, a helpful tool for safeguarding equity is designed secret. Encapsulated sharing visual encryption system and difficulties in revealing the identity of secret images [13] will be demonstrated [14, 15]. We are aware of its importance in protecting digital biometric data contained in a database. We're looking into the possibilities of utilizing VC to encrypt biometric data [14] in this study. Using threshold visual cryptography, a private image can be included among n shadow images with k or more people able to access it, but k-1 or few people will have no idea what it is [15]. A new XOR-based visual cryptography system (XVCS) was presented [11]. To create a visual cryptography system, we will use two strategies for general access structure. Authors look at the VCS's architecture and find that it restricts the amount of money each user gets [16].

Secret sharing mechanisms are examined in this research. They learn about the pros and cons of using this technique and its contribution to the development of the secure secrete system for sharing photographs over the network [17]. To suppress an image, we can divide it into two or more pieces, each of which can be used to restore the initial impression when the time comes [18]. Visual cryptography systems are compared based on the number of secret images, pixel expansion, image format, and the nature of share produced in this comparison paper to exchange an encrypted image. We'll examine various visual cryptography approaches and compare them [19]. Here, we will look at the uses of Visual Cryptography, focusing on four multiple research publications that concentrate on the core aspect of Encryption. [20]. To analyze the performance of each VC encryption method, we used the pixel expansions and image format share generation, as well as the total number of shares, in this paper [21].

An Elliptic Curve Diffie Hellman algorithm and a visual cryptography tool are working. The secret images and visual sharing are scrambled with the ECDH secret key and then converted into encrypted data in base64 format [22] to ensure safe delivery. An algorithm based on image processing and VC is developed for securing and authenticating your data. The customer's signatures will be processed by this method, and then they will be broken into shares [23]. To guarantee the digital image's security, robustness, and transparency. A digital image's copyright is safeguarded using the watermarking method, which is the subject of this study [24]. A visual cryptography-based copyright protection solution is being proposed. Our hidden and public images can be generated using this technology, which doesn't require watermarks to be embedded directly into the secured image. [25]. Extendable VC and QR codes can prevent online fraud transactions from taking place. The VC is used to generate shares, while the OTP identifies a phishing website. [26]. A cloud-based picture storage security system protects images in real-time [27]. Some algorithms protect cloud data, but they necessitate a significant investment in computing power, storage, and other factors. They propose a method to address these concerns by Utilizing visual cryptography to encrypt portable document formats. It provides data secrecy and integrity with minimal compute and storage space [28].

The SDPBDVC (Secure Data Processing on Big Data Using VC) approach protects critical data [29]. Cloud storage security is hard to maintain since data is stored in plain text or unencrypted form, making it easier for attackers to obtain our personal information. Proposing a visual cryptographic approach to data obfuscation to solve this problem [30].

Webology (ISSN: 1735-188X) Volume 19, Number 3, 2022

2.1. **Taxonomy Diagram**

Figure 3. Taxonomy Diagram

2.2. Analysis Table

The analysis table has presented all discussed approaches in a table manner. This table allows us to keep track of all the paper highlights elaborated in the literature review. References, challenges, solutions, contributions, limitations, and dataset are included in this Table 2. This table provides us with the contribution of different authors that they have done in their papers and which type of data set was used by them.

Ref.	Problems	Solution	Contributions	Limitation	Data Set
[2]	Image security	Symmetric Key	Process of	It gives us a	SSIM is the
2010	and privacy	Cryptography.	Symmetric key	solution only	image of any
	Image Theft		cryptography.	when we	format.
			Quality of Image	transfer the	
			reconstruction	image through	
				the network.	
[3]	Debit or Credit	Steganography	Authentication	The payment	Transactions.
2014	card fraud.	and	system	system does not	Credit or
	Unauthorized	VC.	using VC.	extend to	debit cards
	access to data			physical	
				banking	

 Table 2. Analysis Table for Visual Cryptography Techniques

[4]	Easy access	Multiple,	Multiple	Limited scope	Secret Binary
2010	facilitates	Invisible and	Watermarking	just focuses on	Image.
	information	Digital image	techniques using	watermarking	XOR gate,
	piracy,	watermarking	master share and	techniques	
			ownership share.		
[5]	Unauthorized	Secured	SDSUVC	Focus on the	User Data.
2015	access, Plain	document sharing	technique	cloud	Cloud
	data	using VC.		computing	Storage.
				environment.	
[6]	Unauthorized	Visual	Pixel expansion,	All the work is	Image shares.
2011	access to data.	cryptography and	size, and quality of	done by using	Customer
	Multiple attacks.	Hou's third	the reconstructed	Hou's	data
		algorithm.	image	algorithm.	Database etc.
[7]	Image	A secure $(2, 2)$	A secure $(2; 2)$	It provides	Image and its
2013	Processing and	extended visual	extended VCS does	pixel expansion	shares.
	confidentiality	cryptography	not require more	for just a	Biometrics
	Issues.	scheme.	pixels to recover	halftone image.	identifier.
	Image shares	Biometric	the image.		
	theft	information			
[8]	Privacy	Zero	Zero-watermarking	VC and zero	Biometrics.
2017	breaches.	Watermarking.	for sharing	watermarking	Cloud
	Limited	Visual	biometrics.	only focus on	Storage
	protection	Cryptography for	Visual Encryption	biometric	
	provided by	fog edge	for biometric	images.	
	cloud computing	computing	security.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
[9]	The previous	VIP	Maintain pixel	It will give in	Color EVC
2011	method cannot	synchronization.	position. Share can	low contrast.	scheme.
	apply to colored	Error Diffusion	be readable.		Image and
	share.		Digital halftoning		pixels.
	Low visual				
[10]	quality				
	Data	FIFI scheme.	PKNG, Singular	Complexity	Master and
2011	authentication	Blind Waterrear ¹ -in-	value	due to	ownership
	issues.	watermarking.	decomposition.	mathematical	shares.
	Intellectual	VC.	Generation of	models	Complex
	property rights		master and	involves in it.	mathematics
[11]	Issues.	VOD hard VC	The linear	I need commis-	Data ar
[11] 2017		AUK-Dased VU.	I ne linear	i need complex	Data on
2017	information	General access	algeoraic approach	knowladza ta	which we can
	from ports loss	structure. Linear	IS USED to construct	knowledge to	periorm
	then k	techniques	AVCS WILL PERICU	Linear Algobra	computation
	ulall K.	techniques	lower rivel	Linear Algeora	computation.
			lower pixel		

			expansions, the		Mathematic
			difference is		models
			excellent.		
[12]	When all shares	Using Elliptic	Creating multiple	Creating a	Mathematical
2017	are heaped up,	Curve	shares of the	share that only	models.
	they reveal the	Cryptography.	picture with the aid	works for the	XOR and
	image's secret.	Using a visual	of ECV.	RGB contrast-	matrices
		secret sharing	Using PSNR value	based.	models.
		scheme.			
[13]	Image privacy	Using Advanced	A novel secure	Not used for	AES
2015	leakage and	Encryption	creation scheme.	different share	algorithm.
	theft.	Standard	Encapsulated share	creation	Shares of
		(AES) algorithm.	mechanism that	procedure	pictures.
		Encapsulated	protects the share.		Matrix
		Share.			calculations.
[14]	Issues with the	VC for biometric	Securing iris and	Image can be	Candidate
2011	storage of the	privacy. Apply	fingerprint	reconstructed	host Image.
	biometric	XM2VTS and	template, Private	only when both	MGBC
	system.	IMM face	face image.	sheets are	database.
		databases.		available.	Pixel
					Expansion
[15]	Existing VCS	Using VCS for a	The dithering	It's for a gray-	Original
2003	for binary	gray-level image	technique tells the	level image,	image.
	images is	by dithering	advantages of	not focusing on	Visual
	applied to gain	techniques.	inheriting any	other formats.	Patterns.
	work of creating	Watermarking	developed		
	shares		SFCOD algorithm		
[17]	Vulnerability on	Different schemes	Providing a survey	Focus on	Image and
2016	networks.	of visual	for many VC	sharing data or	different
	Privacy	cryptography.	techniques.	images only	types of
	breaching			through a	techniques.
				network.	
[19]	Privacy issues	Different	Comparing several	Its limited	Written,
2013	while	techniques of	visual	enhancement	financial
	transferring data	visual	cryptography	and progress in	documents,
	or images	cryptography	approaches.	the field of VC.	text images,
	through the				internet
	channels.				voting
[20]	Facing privacy	Four different	Working on VC	Using only four	Data like
2016	and	types of Visual	encryption schemes	papers to make	images,
	confidentiality	cryptography	to enhance privacy	a comparison.	multimedia
	issues due to	encryption	and confidentiality.		files, etc.
	using plain data.	schemes.			

[22]	The cost of	VC approach and	Elliptic Curve	It just has	Image of any
2020	computing	Diffie Hellman	Diffie Hellman	limited scope	format
	required to	EC methodology.	methodology.	because	included in it.
	encrypt the			focusing on just	
	picture is			time.	
	expensive.				
[23]	Authenticity	An algorithm is	Process the	Facilitate the	Customer
2008	issue in banking	proposed based	customer's	banking	data related
	applications.	on image	signature, and then	customer and	to bank.
	Data theft issue,	processing and	it will break it into	application	Important
		VC	shares.	only.	transactions.
[26]	Phishing attacks,	System for	Share generation.	It's more work	Important
2017	Security	preventing online	Extended VC	focusing on	data of
	breaches.	fraud transactions	convert QR code	overcoming the	anyone.
		using extended	into two shares	issue of a	
		VC and QR		phishing attack.	
		codes.			
[28]	Data security in	Using enhanced	Ensures data	Focusing on	The
2017	cloud storage is	VC, secure	confidentiality and	just cloud	document,
	a difficult job for	portable	integrity with	computing	Storage
	cloud customers.	document format	minimum		Computation
		files.	computation.		al issue, and
					cost.
[29]	Difficult to	SDPBDVC	MapReduce	Does not	Organization
2020	process a large		handles a large	perform any	al and
	amount of data		amount of data.	process for the	company
	in cloud storage.			small amount	data in huge
				of data.	amounts.

2.3. **Comparative Table**

The comparative table will compare multiple previously proposed techniques based on the attributes mentioned in Table 3. This table shows that all the visual cryptography techniques described in this paper use which type of technologies.

Table 3. Comparative table

Ref:	Share	Biometric	Device	Cloud-	Auth.	Image
	Creation	Based	Mobility	Based	Based	Process
[2]	\checkmark	x	×	×	×	\checkmark
I	•	••	••	*	*	•
[3]	, √	*	×	~	~	*

[5]	×	×	×	\checkmark	×	×
[6]	\checkmark	×	×	×	\checkmark	×
[7]	✓	×	×	×	×	\checkmark
[8]	×	\checkmark	×	×	×	\checkmark
[9]	×	×	×	×	×	×
[10]	×	×	\checkmark	×	×	×
[11]	×	×	×	×	×	✓
[12]	✓	×	×	×	×	×
[13]	×	×	×	×	×	\checkmark
[14]	✓	✓	×	×	×	×
[15]	✓	×	×	×	×	✓
[16]	×	×	×	×	×	×
[17]	✓	×	✓	×	×	√
[25]	×	×	×	×	√	×
[26]	×	×	×	\checkmark	✓	×
[27]	×	×	*	\checkmark	×	×
[28]	×	×	×	\checkmark	×	×
[29]	×	×	×	×	×	×
[30]	×	×	×	\checkmark	×	×

3. Future Predictions and Trends

Visual cryptography is a complex technique that combines the ideal ciphers and steganography elements of Encryption with graphics. A digital image may be divided into segments and then reassembled to resemble the original. We have seen a vast rise in digital data processing, the usage of sensitive data, and the growth of laws and regulations to assist manage and preserving it all today. As security experts, we should develop solutions to secure our clients' data by avoiding privacy violations as we navigate through these phases of growth and development. Researchers believe cryptography will be a highly crucial tool for securing this data when used in combination with several other security standards. This section will discuss the security breaches in recent years and methods that will tackle these breaches by using visual cryptography. In addition, emerging technologies are provided, which will help protect data.

3.1. Threats in Visual Cryptography

Publishers are continuously forced to keep ahead of the curve, especially when it comes to ensuring the protection of their clients. As a result, they could be the next three breakthroughs in data encryption. Table 4 discusses the major encryption technologies.

 Table 4. Emerging Technologies in VC

New	Problem	Description
Technology		
Homomorphic	Decrypting	Individuals handle
Encryption	data when it is	encoded data and
	at rest in	generate encrypted
	storage space.	outputs using
		homomorphic
		Encryption.
Quantum	Eavesdropping	Using quantum
Cryptography		physics principles,

		quantum
		cryptography encodes
		and sends data in an
		extremely secure
		way.
Visual	Secret Sharing	Visual Cryptography
Cryptography		allows Encryption
		and decryption of
		visual information.
Whole disk	Device Lost	This protects it when
encryption		a laptop or gadget is
		lost or destroyed, and
		a key is needed to
		decode the data.

Because the healthcare business is a requirement, it is a great target for cybercriminals for many purposes. Identity fraud, self-benefit, and smear campaigns are among them. Between 2009 and 2015, the healthcare business reported a significant growth in data theft. "During 2009 and 2018, there were 2,546 information exposures containing more than 500 records," according to the HIPPA journal. One hundred eighty-nine million nine hundred forty-five thousand eight hundred seventy-four records were stolen or exposed because of these incidents. And over 59 percent of the population of the United States is represented by this figure. Data breaches in healthcare are currently reported more than once per day.

Figure 4. Number of Data Breaches from 2008-2025

While studying the various research, we concluded that hackers and unauthorized individuals discover additional and varied methods to infiltrate data as technology progresses.

According to (Recognition of MitM attacks techniques using physical layer wireless security), they recorded 438.9 million MITM assaults in 2015 and 565.4 million in 2016. By combining these data, we can create a graph that shows how many attacks took place in 2018 and how many will occur in 2022.

Figure 5. Data Breaches from 2018-2022 [31]

4. Conclusion

As we know, that Visual Cryptography is an important encryption technique to hide information in images. In this paper, we have discussed the applications and specialty of visual cryptography (VC). We have seen the visual cryptographic techniques used to hide the original information. So basically, visual cryptography techniques are being used for security and privacy, and it has a wide range of its applications. This paper proposes different techniques of VC for the authentication of visual cryptography. We maintain the security and privacy of all visual gadgets like (photos, pictures, etc.) and secure data transfer to communicational channels. And finally, we analyze the future directions in cryptography with recent data breaches in recent years.

References

- [1] Ashutosh and S. D. Sen, "Visual cryptography," Proc. 2008 Int. Conf. Adv. Comput. Theory Eng. ICACTE 2008, pp. 805–807, 2008, doi: 10.1109/ICACTE.2008.184.
- [2] B. SaiChandana and S. Anuradha, "A New Visual Cryptography Scheme for Color Images," Int. J. Eng. ..., vol. 2, no. 6, pp. 1997–2000, 2010.
- [3] S. Roy and P. Venkateswaran, "Online payment system using steganography and visual cryptography,"
 2014 IEEE Students' Conf. Electr. Electron. Comput. Sci. SCEECS 2014, pp. 1–5, 2014, doi: 10.1109/SCEECS.2014.6804449.
- [4] B. Surekha, D. G. Swamy, and D. K. S. Rao, "A Multiple Watermarking Technique for Images based on Visual Cryptography," Int. J. Comput. Appl., vol. 1, no. 11, pp. 78–82, 2010, doi: 10.5120/236-390.
- [5] K. Brindha and N. Jeyanthi, "Secured document sharing using visual cryptography in cloud data storage," Cybern. Inf. Technol., vol. 15, no. 4, pp. 111–123, 2015, doi: 10.1515/cait-2015-0058.
- [6] Jaya, S. Malik, A. Aggarwal, and A. Sardana, "Novel authentication system using visual cryptography," Proc. 2011 World Congr. Inf. Commun. Technol. WICT 2011, pp. 1181–1186, 2011, doi: 10.1109/WICT.2011.6141416.
- [7] I. Canadian, C. Of, and E. Engineering, "AN EXTENDED VISUAL CRYPTOGRAPHY SCHEME WITHOUT PIXEL EXPANSION FOR HALFTONE IMAGES N. Askari, H. M. Heys, and C. R. Moloney Electrical and Computer Engineering Faculty of Engineering and Applied Science Memorial University of Newfoundland," 2013.

- [8] W. Abdul, Z. Ali, S. Ghouzali, B. Alfawaz, G. Muhammad, and M. S. Hossain, "Biometric Security Through Visual Encryption for Fog Edge Computing," IEEE Access, vol. 5, pp. 5531–5538, 2017, doi: 10.1109/ACCESS.2017.2693438.
- [9] I. Kang, G. R. Arce, and H. K. Lee, "Color extended visual cryptography using error diffusion," IEEE Trans. Image Process., vol. 20, no. 1, pp. 132–145, 2011, doi: 10.1109/TIP.2010.2056376.
- [10] S. Rawat and B. Raman, "A blind watermarking algorithm based on fractional Fourier transform and visual cryptography," Signal Processing, vol. 92, no. 6, pp. 1480–1491, 2012, doi: 10.1016/j.sigpro.2011.12.006.
- [11] G. Shen, F. Liu, Z. Fu, and B. Yu, "Perfect contrast XOR-based visual cryptography schemes via linear algebra," Des. Codes, Cryptogr., vol. 85, no. 1, pp. 15–37, 2017, doi: 10.1007/s10623-016-0285-5.
- [12] K. Shankar and P. Eswaran, "RGB based multiple share creation in visual cryptography with aid of elliptic curve cryptography," China Commun., vol. 14, no. 2, pp. 118–130, 2017, doi: 10.1109/CC.2017.7868160.
- ^[13] K. Shankar and P. Eswaran, "Sharing a Secret Image with Encapsulated Shares in Visual Cryptography," Procedia Comput. Sci., vol. 70, pp. 462–468, 2015, doi: 10.1016/j.procs.2015.10.080.
- [14] A. Ross and A. Othman, "Visual cryptography for biometric privacy," IEEE Trans. Inf. Forensics Secur., vol. 6, no. 1, pp. 70–81, 2011, doi: 10.1109/TIFS.2010.2097252.
- [15] C. C. Lin and W. H. Tsai, "Visual cryptography for gray-level images by dithering techniques," Pattern Recognit. Lett., vol. 24, no. 1–3, pp. 349–358, 2003, doi: 10.1016/S0167-8655(02)00259-3.
- [16] G. Ateniese, C. Blundo, A. De Santis, and D. R. Stinson, "Visual Cryptography for General Access Structures," Inf. Comput., vol. 129, no. 2, pp. 86–106, 1996, doi: 10.1006/inco.1996.0076.
- [17] A. C. S. M. A. Kalekar, "Visual Cryptography for Sharing Digital Image Using Diverse Media," Int. J. Sci. Res., vol. 5, no. 10, pp. 1141–1144, 2016, [Online]. Available: https://www.ijsr.net/archive/v5i10/ART20162204.pdf.
- [18] S. A. Thomas and S. Gharge, "Review on Various Visual Cryptography Schemes," Int. Conf. Curr. Trends Comput. Electr. Electron. Commun. CTCEEC 2017, vol. 3, pp. 1164–1167, 2018, doi: 10.1109/CTCEEC.2017.8455136.
- [19] A. B. Dhole and P. N. J. Janwe, "An Implementation of Algorithms in Visual Cryptography in Images," Int. J. Sci. Res. Publ., vol. 3, no. 3, pp. 1–5, 2013.
- [20] A. Pandey and S. Som, "Applications and usage of visual cryptography: A review," 2016 5th Int. Conf. Reliab. Infocom Technol. Optim. ICRITO 2016 Trends Futur. Dir., pp. 375–381, 2016, doi: 10.1109/ICRITO.2016.7784984.
- [21] J. Ramya and B. Parvathavarthini, "An extensive review on visual cryptography schemes," 2014 Int. Conf. Control. Instrumentation, Commun. Comput. Technol. ICCICCT 2014, pp. 223–228, 2014, doi: 10.1109/ICCICCT.2014.6992960.
- [22] A. K. J and G. Ganapathy, "A Visual Cryptographic Technique for Transferring Secret Image in Public Cloud," Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 3, pp. 2257–2260, 2020, doi: 10.35940/ijitee.c9037.019320.
- [23] C. Hegde, S. Manu, P. D. Shenoy, K. R. Venugopal, and L. M. Patnaik, "Secure authentication using image processing and visual cryptography for banking applications," Proc. 2008 16th Int. Conf. Adv. Comput. Commun. ADCOM 2008, no. Vc, pp. 65–72, 2008, doi: 10.1109/ADCOM.2008.4760429.

- [24] R. J. Hwang, "A digital image copyright protection scheme based on visual cryptography," Tamkang J. Sci. Eng., vol. 3, no. 2, pp. 97–106, 2000, doi: 10.6180/jase.2000.3.2.04.
- [25] D. C. Lou, H. K. Tso, and J. L. Liu, "A copyright protection scheme for digital images using visual cryptography technique," Comput. Stand. Interfaces, vol. 29, no. 1, pp. 125–131, 2007, doi: 10.1016/j.csi.2006.02.003.
- ^[26] S. Khaimar and R. Kharat, "Online Fraud transaction prevention system using extended visual cryptography and QR code," Proc. 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, 2017, doi: 10.1109/ICCUBEA.2016.7860061.
- [27] D. Liu, J. Shen, A. Wang, and C. Wang, "Secure real-time image protection scheme with near-duplicate detection in cloud computing," J. Real-Time Image Process., vol. 17, no. 1, pp. 175–184, 2020, doi: 10.1007/s11554-019-00887-6.
- [28] K. Brindha and N. Jeyanthi, "Securing portable document format file using extended visual cryptography to protect cloud data storage," Int. J. Netw. Secur., vol. 19, no. 5, pp. 684–693, 2017, doi: 10.6633/IJNS.201709.19(5).05.
- [29] K. Brindha and N. Jeyanthi, "SDPBDVC: Secure data processing on big data using visual cryptography," Int. J. Serv. Technol. Manag., vol. 26, no. 2–3, pp. 237–251, 2020, doi: 10.1504/IJSTM.2020.106685.
- [30] K. Brindha and N. Jeyanthi, "DOVC: Data obfuscation visual cryptography to protect cloud storage," Int. J. Soft Comput., vol. 11, no. 6, pp. 374–381, 2016, doi: 10.3923/ijscomp.2016.374.381.
- [31] Qadeer, B., Shah, M.A. and Ishaq, A., 2021. PRIVACY PRESERVATION IN DIGITAL ECONOMY PLATFORMS